15,303 research outputs found

    Oscillation parameters present: Session summary

    Get PDF
    © Copyright owned by the author(s) under the terms of the Creative Commons. Session I of the Neutrino Oscillation Workshop 2018 Conference, “Neutrino Oscillations: Present”, is summarised. Results were presented by the currently-running long-baseline oscillation experiments T2K and NOvA, as well as from the accelerator experiments OPERA and MiniBooNE. Status reports and results from experiments using short-baseline accelerator neutrinos (ICARUS and MicroBooNE), atmospheric neutrinos (Super-K, IceCube and ANTARES), and those from reactors (Daya Bay and Double Chooz), and from the Sun and the Earth (Borexino) were also presented. Our current knowledge of neutrino oscillation parameters depends significantly on the experimental inputs that inform us of details of the production and interactions of neutrinos, which were presented by the NA61/SHINE hadron production experiment and cross section measurements from T2K and MINERvA, as well as a review of the status of our understanding of neutrino production at nuclear reactors. The session also included theoretical reviews of the current status of neutrino oscillations, and phenomenological studies on neutrino tomography and experimental studies to support nuclear matrix element calculations (NUMEN)

    Charge dynamics in thermally and doping induced insulator-metal transitions of (Ti1-xVx)2O3

    Full text link
    Charge dynamics of (Ti1-xVx)2O3 with x=0-0.06 has been investigated by measurements of charge transport and optical conductivity spectra in a wide temperature range of 2-600K with the focus on the thermally and doping induced insulator-metal transitions (IMTs). The optical conductivity peaks for the interband transitions in the 3d t2g manifold are observed in the both insulating and metallic states, while their large variation (by ~0.4 eV) with change of temperature and doping level scales with that of the Ti-Ti dimer bond length, indicating the weakened singlet bond in the course of IMTs. The thermally and V-doping induced IMTs are driven with the increase in carrier density by band-crossing and hole-doping, respectively, in contrast to the canonical IMT of correlated oxides accompanied by the whole collapse of the Mott gap.Comment: 4 pages, 4 figure

    Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors

    Get PDF
    We study synchronization of an array of rotors on a substrate that are coupled by hydrodynamic interaction. The rotors that are modeled by an effective rigid body, are driven by an internal torque and exerts an active force on the surrounding fluid. The long-ranged nature of the hydrodynamic interaction between the rotors causes a rich pattern of dynamical behaviors including phase ordering and turbulent spiral waves. The model provides a novel example of coupled oscillators with long-range interaction. Our results suggest strategies for designing controllable microfluidic mixers using the emergent behavior of hydrodynamically coupled active components.Comment: 4 pages, 3 figure

    Many-Body Theory of Synchronization by Long-Range Interactions

    Full text link
    Synchronization of coupled oscillators on a dd-dimensional lattice with the power-law coupling G(r)=g0/rαG(r) = g_0/r^\alpha and randomly distributed intrinsic frequency is analyzed. A systematic perturbation theory is developed to calculate the order parameter profile and correlation functions in powers of ϵ=α/d1\epsilon = \alpha/d-1. For αd\alpha \le d, the system exhibits a sharp synchronization transition as described by the conventional mean-field theory. For α>d\alpha > d, the transition is smeared by the quenched disorder, and the macroscopic order parameter \Av\psi decays slowly with g0g_0 as |\Av\psi| \propto g_0^2.Comment: 4 pages, 2 figure

    Coronal heating by stochastic magnetic pumping

    Get PDF
    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength

    MHD Waves and Coronal Seismology: an overview of recent results

    Full text link
    Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares

    Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei II. Prediction from our Sweeping Magnetic Twist Model for the Wiggled Parts of AGN Jets and Tails

    Full text link
    Distributions of Faraday rotation measure (FRM) and the projected magnetic field derived by a 3-dimensional simulation of MHD jets are investigated based on our "sweeping magnetic twist model". FRM and Stokes parameters were calculated to be compared with radio observations of large scale wiggled AGN jets on kpc scales. We propose that the FRM distribution can be used to discuss the 3-dimensional structure of magnetic field around jets and the validity of existing theoretical models, together with the projected magnetic field derived from Stokes parameters. In the previous paper, we investigated the basic straight part of AGN jets by using the result of a 2-dimensional axisymmetric simulation. The derived FRM distribution has a general tendency to have a gradient across the jet axis, which is due to the toroidal component of the magnetic field generated by the rotation of the accretion disk. In this paper, we consider the wiggled structure of the AGN jets by using the result of a 3-dimensional simulation. Our numerical results show that the distributions of FRM and the projected magnetic field have a clear correlation with the large scale structure of the jet itself, namely, 3-dimensional helix. Distributions, seeing the jet from a certain direction, show a good matching with those in a part of 3C449 jet. This suggests that the jet has a helical structure and that the magnetic field (especially the toroidal component) plays an important role in the dynamics of the wiggle formation because it is due to a current-driven helical kink instability in our model.Comment: Accepted for publication in Ap

    Recent Advances in Percutaneous Cardioscopy

    Get PDF
    Percutaneous cardioscopy, using high-resolution fiberoptic imaging, enables direct visualization of the cardiac interior, thereby enabling macroscopic pathological diagnosis. Percutaneous cardioscopy has demonstrated that the endocardial surface exhibits various colors characteristic of different heart diseases. This imaging modality can now be used for evaluation of the severity of myocardial ischemia, and staging of myocarditis. Myocardial blood flow recovery induced by vasodilating agents or percutaneous coronary interventions can be clearly visualized. Morphological and functional changes in the cardiac valves can also be evaluated. Cardioscope-guided endomyocardial biopsy enables pin-point biopsy of the diseased myocardium. Recently, dye-image cardioscopy and fluorescence cardioscopy were developed for evaluation of the subendocardial microcirculation. Cardioscope-guided intracardiac therapies such as myotomy, myectomy, valvulotomy, and transendocardial angiogenic and myogenic therapy have been trialed using animal models in anticipation of future clinical applications. Percutaneous cardioscopy has the potential to contribute to our understanding of heart disease, and to assist in guidance for intracardiac therapies

    NMR and NQR study of pressure-induced superconductivity and the origin of critical-temperature enhancement in the spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41}

    Get PDF
    Pressure-induced superconductivity was studied for a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} using nuclear magnetic resonance (NMR) under pressures up to the optimal pressure 3.8 GPa. Pressure application leads to a transitional change from a spin-gapped state to a Fermi-liquid state at temperatures higher than TcT_c. The relaxation rate 1/T11/T_1 shows activated-type behavior at an onset pressure, whereas Korringa-like behavior becomes predominant at the optimal pressure, suggesting that an increase in the density of states (DOS) at the Fermi energy leads to enhancement of TcT_c. Nuclear quadrupole resonance (NQR) spectra suggest that pressure application causes transfer of holes from the chain to the ladder sites. The transfer of holes increases DOS below the optimal pressure. A dome-shaped TcT_c versus pressure curve arises from naive balance between the transfer of holes and broadening of the band width
    corecore